Genomics, Proteomics, and Bioinformatics:

Genome Expression Analysis in Yeast Reveals Novel Transcriptional Regulation by Inositol and Choline and New Regulatory Functions for Opi1p, Ino2p, and Ino4p

Teresa C. Santiago and Choukri Ben Mamoun J. Biol. Chem. 2003, 278:38723-38730. doi: 10.1074/jbc.M303008200 originally published online July 18, 2003

Access the most updated version of this article at doi: 10.1074/jbc.M303008200

Find articles, minireviews, Reflections and Classics on similar topics on the JBC Affinity Sites.

Alerts:

- · When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 47 references, 30 of which can be accessed free at http://www.jbc.org/content/278/40/38723.full.html#ref-list-1

Genome Expression Analysis in Yeast Reveals Novel Transcriptional Regulation by Inositol and Choline and New Regulatory Functions for Opi1p, Ino2p, and Ino4p*

Received for publication, March 24, 2003, and in revised form, July 16, 2003 Published, JBC Papers in Press, July 18, 2003, DOI 10.1074/jbc.M303008200

Teresa C. Santiago and Choukri Ben Mamoun‡

From the Center for Microbial Pathogenesis and the Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut 06030-3710

In Saccharomyces cerevisiae, genes encoding phospholipid-synthesizing enzymes are regulated by inositol and choline (IC). The current model suggests that when these precursors become limiting, the transcriptional complex Ino2p-Ino4p activates the expression of these genes, whereas repression requires Opi1p and occurs when IC are available. In this study, microarray-based expression analysis was performed to assess the global transcriptional response to IC in a wild-type strain and in the $opi1\Delta$, $ino2\Delta$, and $ino4\Delta$ null mutant strains. Fifty genes were either activated or repressed by IC in the wild-type strain, including three already known IC-repressed genes. We demonstrated that the IC response was not limited to genes involved in membrane biogenesis, but encompassed various metabolic pathways such as biotin synthesis, one-carbon compound metabolism, nitrogen-containing compound transport and degradation, cell wall organization and biogenesis, and acetyl-CoA metabolism. The expression of a large number of IC-regulated genes did not change in the $opi1\Delta$, $ino2\Delta$, and $ino4\Delta$ strains, thus implicating new regulatory elements in the IC response. Our studies revealed that Opi1p, Ino2p, and Ino4p have dual regulatory activities, acting in both positive and negative transcriptional regulation of a large number of genes, most of which are not regulated by IC and only a subset of which is involved in membrane biogenesis. These data provide the first global response profile of yeast to IC and reveal novel regulatory mechanisms by these precursors.

The soluble precursors inositol and choline (IC)¹ exert a major regulatory effect on the enzymes of the phospholipid, sterol, and fatty acid biosynthetic pathways (1). The available data suggest the following model for IC-mediated regulation of gene expression (1, 2). When extracellular levels of these precursors become limiting, a transcriptional heterodimeric complex composed of the basic helix-loop-helix proteins, Ino2p, and Ino4p (3, 4) binds to a conserved *cis*-acting upstream activating

sequence designated the IC-responsive element, also known as UAS_{INO}, which resides in the promoters of many genes encoding phospholipid, fatty acid, and sterol biosynthetic enzymes and activates their transcription (5-9). In the presence of IC, expression of these genes is down-regulated. Several genes encoding enzymes involved in lipid metabolism have been shown to exhibit this pattern of regulation. However, the repression ratios vary from one gene to another. INO1, which encodes the inositol-1-phosphate synthase, is the most highly repressed gene with at least 30-fold repression in response to IC (10). Other genes such as those encoding phosphatidylserine synthase (PSS1/CHO1), CDP-diacylglycerol synthase (CDS1), phosphatidylcholine decarboxylase (PSD1), phospholipid methyltransferases (CHO2/PEM1 and OPI3/PEM2), choline kinase (CKI1), choline phosphotransferase (CPT1), the α -subunit of the fatty-acid synthase (FAS1), the inositol transporter (ITR1), phosphatidylglycerophosphate synthase (PGS1), and acetyl-CoA carboxylase (ACC1) exhibit lower expression ratios (1, 11–22). IC-mediated repression of *INO1* also requires a functional *OPI1* gene, which encodes the Opi1p protein, postulated to act as a repressor of the transcription of the UAS_{INO}-containing genes (23). Disruption of OPI1 results in a complete loss of IC-mediated repression of INO1. Overexpression of OPI1 results in inhibition of activation of expression of UA- S_{INO} -containing genes even in the absence of IC (23) and renders wild-type yeast auxotrophic for inositol, supporting the idea that it functions as a negative regulator of phospholipid biosynthesis. Interestingly, the expression of both INO2 and OPI1 genes is also down-regulated in the presence of IC (24, 25). Conversely, the activity and/or transcription of genes encoding diacylglycerol-pyrophosphate phosphatase (DPP1), inositol-phosphorylceramide synthase (AUR1), one form of Mg²⁺dependent phosphatidate phosphatase, and myo-inositol 1-monophosphatase (INM1) has been reported to be moderately up-regulated by inositol (26-29). However, the mechanism of inositol-mediated transcriptional activation has not been investigated. The regulation of gene expression by IC suggests the presence of a specialized transduction pathway. However, little is known about the possible components of this pathway. Ino2p, the main player in the heterodimeric complex, is suggested to be the target of such a signaling pathway, as the overexpression of INO2 (but not of INO4) counteracts the repression mediated by IC (30, 31).

In this study, we analyzed global gene expression in response to IC in wild-type, $opi1\Delta$, $ino2\Delta$, and $ino4\Delta$ yeast strains. We found 50 genes that were either repressed or activated by at least 3-fold in response to IC in the wild-type strain, including three known IC-repressed genes. IC regulation affected various metabolic pathways, including biotin synthesis, one-carbon compound metabolism and methionine synthesis, nitrogen

^{*} This work was supported by the University of Connecticut Health Center Research Fund, the Robert Leet and Clara Guthrie Patterson Trust, and the United States Army Medical Research and Materiel Command. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

[‡] To whom correspondence should be addressed: Center for Microbial Pathogenesis, E7041, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT 06030-3710. Tel.: 860-679-3544; Fax: 860-679-8130; E-mail: choukri@up.uchc.edu.

 $^{^{\}rm 1}\,\mathrm{The}$ abbreviations used are: $\bar{\mathrm{IC}},$ inositol and choline; RT, reverse transcription.

Table I Oligonucleotides used in this study

Gene name	$5^\prime ext{-Oligonucleotide}$	$3' ext{-Oligonucleotide}$
ACT1	5'-CGGTATGGGTCAAAAAGACTCCTAC-3'	5'-GGACAAAACGGCTTGGATGG-3'
BIO2	5'-AGTCATTCGTGGACAAAATCGC-3'	5'-TCGTCTTCGCTTTCACCGAG-3'
BIO3	5'-TGGTAGAACAGGTGAGATTTTCGC-3'	5'-TGGTGGCATAATGTAACACAGGC-3'
BIO4	5'-CGCATCAACTTGGCAACCAC-3'	5'-TGACACCGAACTTCTTCAGGGC-3'
BIO5	5'-TACGAGGACCCTTCTGACGATG-3'	5'-AACCGACAACAACGCCATTC-3'
GCV1	5'-GAGACACCGAGTTCTTTCACGATG-3'	5'-GCTGGTCCATTATCTTGGCATAGC-3'
INO1	5'-GGCAACAATGGCTCCACTTTAG-3'	5'-GAGGCTTCACCAAGGACATCTTC-3'
MEP2	5'-GGACTACAGTTGGTTTGTGTTCAGG-3'	5'-TGAGGAGGTGGCATTTGTGC-3'
MTD1	5'-CTAACGGCGATGACTCTGTGAAC-3'	5'-CCTTCTTTGATGTATTCGGTGGG-3'
OPI3	5'-TCCAGCAACTCATCCACAGTGTC-3'	5'-TGCCCCAAACCAAAGAGAGC-3'
OPT1	5'-GGAAGCAATGACTAACCAACACG-3'	5'-TCAAGAAGAACCACATCAGCGG-3'
SAM2	5'-TCCATTCTCCAAGGTTGCCTG-3'	5'-CCCATCTACCATTGTCGTCTTCG-3'
VHT1	5'-CTCAAACCAAGGCTGAAAGACG-3'	5'-AAGTCCTGAAGTCACGGAACCC-3'

transport and degradation, cell wall organization and biogenesis, and acetyl-CoA metabolism. The function of 13 genes is unknown. These data, which provide the first global response of yeast to IC, reveal novel regulatory mechanisms by these precursors and indicate that Opi1p, Ino2p, and Ino4p are involved in both positive and negative regulation of expression of a large number of genes, only a subset of which is regulated by IC and is involved in phospholipid biosynthesis.

EXPERIMENTAL PROCEDURES

Strains and Media—Saccharomyces cerevisiae strains BY4741 (MATa his3 $\Delta 1$ leu2 $\Delta 0$ met15 $\Delta 0$ ura3 $\Delta 0$), opi1 Δ (MATa his3 $\Delta 1$ leu2 $\Delta 0$ met15 $\Delta 0$ ura3 $\Delta 0$ opi1::KAN r), ino2 Δ (MATa his3 $\Delta 1$ leu2 $\Delta 0$ met15 $\Delta 0$ ura3 $\Delta 0$ ino2::KAN r), and ino4 Δ (MATa his3 $\Delta 1$ leu2 $\Delta 0$ met15 $\Delta 0$ ura3 $\Delta 0$ ino4::KAN r) were used in this study. The growth media used in this study were minimal medium without inositol (SDI $_0$: 1.7% yeast nitrogen base lacking inositol, 5% ammonium sulfate, and 2% dextrose) and minimal medium with IC (SDI $_{50}$: 1.7% yeast nitrogen base lacking inositol, 5% ammonium sulfate, 2% dextrose, 50 μ M inositol, and 1 mM choline). Appropriate amino acids (200 mg/liter each) were added to maintain cell growth.

Growth Conditions and RNA Preparation—Wild-type and opi1 Δ strains were grown overnight in SDI₀, after which they were diluted and grown in SDI₅₀ at 30 °C to an absorbance of 0.7 at 600 nm. The $ino2\Delta$ and $ino4\Delta$ strains were cultivated overnight in SDI₅₀, diluted, and grown in SDI₅₀ at 30 °C to $A_{600}=0.7$. Duplicates were prepared for each condition. RNA was obtained as described by Schmitt et~al.~(32). Harvested cells were resuspended in 50 mM sodium acetate (pH 5.3) and 10 mM EDTA and then treated with SDS and acidic phenol. After vigorous vortexing, the cells were incubated at 65 °C for 4 min and chilled in a dry ice/ethanol mixture. Suspensions were centrifuged, and the aqueous layer was collected, acidified with ammonium acetate, and precipitated with absolute ethanol at -20 °C. Total RNA was purified using the RNeasy RNA purification kit (QIAGEN Inc.).

Microarray Analysis—Preparation of cRNA and hybridizations were performed at the HHMI Biopolymer-Keck Foundation Biotechnology Resource Laboratory. The GeneChip yeast genome S98 array from Affymetrix was used in all hybridizations. The array contains \sim 6300 annotated genes from *S. cerevisiae*. "Comparison expression analyses" were performed using Affymetrix MAS Version 5.0 software as recommended by Affymetrix. Four pairwise comparisons (expressed as signal log ratios) were obtained between data sets (n=2) from the experiment and data sets (n=2) from the base line. For each gene, the average of the four signal log ratios was computed and converted to a -fold change value. Clustering analysis was performed using the Spotfire program.

Reverse Transcription (RT)-PCR—Total RNA was treated with DNase I (Promega) for 30 min at 37 °C. First-strand cDNA synthesis was performed using the SuperScript first-strand synthesis system for RT-PCR (Invitrogen). Three μg of DNase-treated RNA, 3 μl of random hexamers (50 ng/ μl), and 1 μl of dNTPs (10 mM) were combined and adjusted to 10 μl with diethyl pyrocarbonate-treated water. The mixture was then incubated at 65 °C for 5 min and chilled. The RNA/primer mixture, RT buffer, MgCl₂ (5 mM final concentration), dithiothreitol (0.01 M final concentration), and ribonuclease inhibitor were added to a final volume of 19 μl . After incubation at 25 °C for 2 min, 50 units (1 μl) of SuperScript II RT was added, and the mixture was incubated at

25 °C for 10 min, 42 °C for 50 min, and 70 °C for 15 min and then chilled briefly. The mixture was treated with RNase H at 37 °C for 20 min. PCR was performed to amplify the BIO2, BIO3, BIO4, BIO5, VHT1, MEP2, INO1, OPI3, SAM2, GCV1, MTD1, OPT1, and ACT1 genes using a 87-fold diluted sample of the cDNA as template and titanium Taq polymerase (Clontech). The following PCR conditions were used: 94 °C for 2 min; 25 cycles of 94 °C for 30 s, 55 °C for 30 s, and 68 °C for 45 s; and finally, 68 °C for 3 min. The primers used in this study are listed in Table I.

Real-time PCR—The LightCycler-FastStart DNA Master SYBR Green I system (Roche Applied Science) was used to amplify the INO1, BIO5, OPT1, and ACT1 genes according to the manufacturer's instructions, using a 24-fold diluted sample of the cDNA as template and the primers described above. Preincubation was done at 95 °C for 10 min, followed by amplification for 45 cycles under the following conditions: 95 °C for 10 s, 55 °C for 5 s, and 72 °C for 20 s. For each gene, the -fold change between the experiment and the base line was calculated as a log value of the difference between the crossing points of the PCRs. The average -fold change is computed from duplicate samples.

RESULTS

Whole Genome Survey for IC-regulated Genes—We have applied microarray analysis to study the global response profile of yeast cells to the presence of the phospholipid precursors inositol and choline. A cDNA probe prepared from poly(A)⁺ RNA isolated from a wild-type yeast strain (BY4741) cultivated in minimal medium lacking or supplemented with IC (IC₅₀) ³ was used to hybridize the GeneChip yeast genome S98 array from Affymetrix. The transcript levels of 50 annotated protein-encoding genes changed at least 3-fold in response to IC_{50} (Table II). Of those, 39 were repressed, whereas 11 were activated. Only 10 (INO1, OPI3, PSD1, VHT1, SAM2, SAG1, ACH1, SRO77, YEL073C, and YJR008W) of the 39 IC-repressed genes contain at least one copy of the UAS_{INO} sequence within their promoter regions (Table II). Of the 50 IC₅₀-regulated genes, only three, INO1, OPI3, and PSD1, which play an important role in membrane biogenesis, were previously known to be regulated by IC. As expected, these three genes were repressed under IC₅₀ conditions. *INO1* showed the highest level of repression (46.9-fold). Of the 50 IC_{50} -regulated genes, 37 have known or predicted cellular functions, and the remaining 13 encode proteins of unknown function (YEL073C, YJR008W, YDL038C, YDL039C, YBR056w-a, YGR213C, YGR161C, YLR136C, YER078C, YJL048C, YDL241W, YLR413W, and YKR075C). Of the 11 IC₅₀-activated genes, eight (GCV1, MMP1, OPT1, MTD1, CWP1, ECM13, MSC2, and NDE1) encode proteins with known and predicted functions, and three (YDL241W, YLR413W, and YKR075C) have unknown function. None of these genes was previously known to be IC-regulated or to harbor a UAS_{INO} sequence in the promoter

² The complete data sets are available upon request.

 $^{^3}$ IC50 is used to highlight the concentration of inositol (50 $\mu \rm M)$ used in this study.

Table II Classification into functional groups of genes whose transcripts are repressed or induced by at least 3-fold by IC_{50} in the wild-type strain

Ciassification		ui groups of ge			sea or maucea	by at least 5-fold by $1C_{50}$ in the wita-type strain
ORF^a code	Gene name			change		Gene description
Off code	Gene name	$egin{array}{l} \mathrm{WT} + \mathrm{IC}_{50} \ vs \ \mathrm{WT} - \mathrm{IC} \end{array}$	$\begin{array}{l} opi1\Delta + \mathrm{IC}_{50} \\ vs \;\mathrm{WT} + \mathrm{IC}_{50} \end{array}$	$ino2\Delta + IC_{50} \ vs \ WT + IC_{50}$	$\begin{array}{l} ino4\Delta + IC_{50} \\ vs \; WT + IC_{50} \end{array}$	Gene description
Phospholipid	biosynthesis a	and transport				
$YJL153C^b$	ĬNO1	-46.9	56.7	-1.2	-2.1	Inositol-1-phosphate synthase
YCR098C	GIT1	-6.5	-1.3	-1.2	-1.5	Phospholipid transporter, general substrate transporter
$YJR073C^{b}$	OPI3	-6.1	7.2	-2.4	-2.5	Methylene-fatty-acyl-phospholipid synthase
$YNL169C^b$		-3.0	4.3	1.6	1.4	Phosphatidylserine decarboxylase
	esis and transp			4.0		T. D.
YNR056C	BIO5	-40.1	-1.4	-1.8	-1.4	KAPA permease
YNR058W		-23.8	-1.1	-1.1	-1.0	Adenosylmethionine-8-amino-7-oxononanoate aminotransferase
YNR057C	BIO4	-6.4	1.0	-1.1	-1.1	Dethiobiotin synthase
YGR286C	BIO2	-6.1	1.1	-1.1	1.1	Biotin synthase
YGR065C ^b		-3.9	1.2	-1.1	1.0	Biotin transporter
YDR502C ^b		-6.8	ethionine synthe 7.3	-1.2	-1.4	S-Adenosylmethionine transferase
YGL125W	MET13	-3.1	2.0	-1.5	-1.1	Methylenetetrahydrofolate reductase
YDR019C	$GCV1^d$	4.8	-1.9	-1.4	-1.1	Glycine dehydrogenase, aminomethyltransferase
YLL061W	$MMP1^d$	4.3	-2.8	2.0	1.6	S-Methylmethionine transporter
YJL212C	$OPT1^d$	4.2	-2.5	1.3	-1.4	Glutathione transporter
YKR080W	$MTD1^d$	3.2	-1.6	-1.5	-1.2	Methylenetetrahydrofolate dehydrogenase
Nitrogen trai YGR138C	nsport and deg TPO2	radation -6.0	3.9	6.3	5.5	Spermine transporter, general substrate
						transporter
YBR006W	UGA2	-4.8	3.0	1.5	1.5	Succinate-semialdehyde dehydrogenase
YNL142W	MEP2	$-4.3 \\ -3.9$	-1.1	$-1.3 \\ 2.0$	$\frac{1.0}{2.1}$	Ammonium transporter
YHL016C YOR273C	DUR3 $TPO4$	$-3.9 \\ -3.0$	$\frac{1.4}{2.5}$	-1.1	-1.0	Urea transporter, Na ⁺ /solute symporter Spermidine transporter, spermine
10112730	1104	5.0	2.5	1.1	1.0	transporter
Cell wall orga	anization and	biogenesis				•
$YJR004C^{b}$	SAG1	-3.7	1.2	1.0	1.3	Cell adhesion receptor
YJR150C	DAN1	-3.4	2.8	c	3.5	Structural component of cell wall, sterol transport
YKL096W	$CWP1^d$	3.4	1.1	-1.2	-1.1	Structural constituent of cell wall
YBL043W	$ECM13^d$	3.0	-1.4	-1.4	-1.5	Cell wall organization and biogenesis
Acetyl-CoA n YPR001W	CIT3	-4.2	1.1	-1.9	-1.1	Citrate synthase
$YBL015W^b$		-4.1	1.1	1.2	1.1	Acetyl-CoA hydrolase/transferase
YOR100C	CRC1	-3.6	-2.0	-1.7	-1.5	Camitine/acyl camitine carrier
Unrelated pa						
YJR155W	AAD10	-9.5	-1.1	-1.1	-1.1	Benzyl-alcohol dehydrogenase
YMR271C	URA10	-9.0	4.3	1.0	1.1	Orotate phosphoribosyltransferase
YOR328W	PDR10	-5.6	-1.2	1.0	1.2	ATP-binding cassette transporter
YBR093C	PHO5	-5.3	1.3	-1.3	-1.3	Acid phosphatase
YBL106C ^b YGL156W	SRO77 AMS1	$-4.5 \\ -3.9$	5.3 1.9	$-1.0 \\ 2.8$	$-1.1 \\ 3.2$	Golgi-to-plasma membrane transport α-Mannosidase
YJR047C	ANB1	$-3.9 \\ -3.1$	1.4	2.8 1.1	-1.0	α-Mannosidase Translation initiation factor
YNL333W	SNZ2	-3.0	1.3	1.3	1.1	Vitamin B ₆ biosynthesis protein
YDR205W	$MSC2^d$	3.5	-6.2	1.1	-1.0	Cation transporter
YMR145C	$NDE1^d$	3.0	-1.4	1.3	1.0	NADH dehydrogenase, disulfide oxidoreductase
Unknown YEL073 C^b		-32.6	34.3	1.2	-1.7	
$YJR008W^b$		-4.7	5.9	1.2	-1.1	
YDL038C		-4.4	1.1	1.7	-1.1	
YDL039C	PRM7	-4.0	1.2	1.7	-1.1	
YBR056w-		-3.8	-1.1	1.8	1.6	
YGR213C	RTA1	-3.7	-1.2	1.5	1.6	
YGR161C	RTS3	-3.4	1.2	1.6	1.5	
YLR136C YER078C	TIS11	$-3.2 \\ -3.2$	$1.1 \\ 2.4$	1.1 1.1	$-1.4 \\ -1.1$	
YJL048C		$-3.2 \\ -3.0$	$\frac{2.4}{2.7}$	1.1	-1.1 1.1	
YDL241W	ı	3.7	-1.7	-2.1	-2.1	
YLR413W		3.4	-1.7	1.2	1.5	
$YKR075C^d$		3.1	-1.8	1.7	-1.2	

 $^{^{}a}$ ORF, open reading frame; WT, wild-type; KAPA, 7-keto-8-aminopelar gonic acid.

Cellular Functions Regulated by IC_{50} —All known yeast genes encoding biotin-synthesizing enzymes as well as transporters of biotin and its precursor were repressed in IC_{50} (Table II). The most highly repressed genes of this group were BIO5 and BIO3, with 40- and 24-fold repression ratios. BIO5 encodes a permease that is involved in the transport of the biotin precursor 7-keto-8-aminopelargonic acid, and BIO3 encodes an enzyme that catalyzes the conversion of this precursor into

^b UAS_{INO} present within the 500-bp upstream region.
^c Undetermined due to significant S.D. in duplicate samples.

 $[^]d$ $\mathrm{IC}_{50}\text{-activated genes.}$

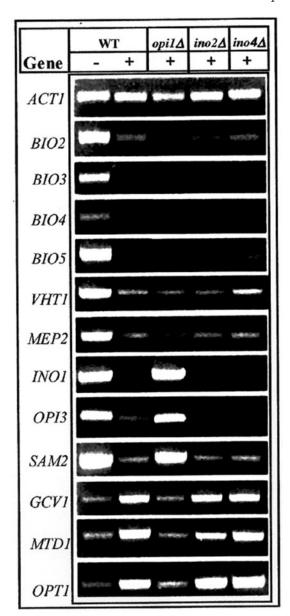


Fig. 1. Semiquantitative RT-PCR analysis of genes activated or repressed by IC $_{50}$. The expression of BIO2, BIO3, BIO4, BIO5, VHT1, MEP2, INO1, OPI3, SAM2, GCV1, MTD1, and OPT1 in the wild-type (WT), opi1 Δ , ino2 Δ , and ino4 Δ strains grown in the presence (+) or absence (-) of IC $_{50}$ was analyzed as described under "Experimental Procedures." ACT1 was used as a control.

7,8-diaminopelargonic acid. *BIO4*, *BIO2*, and *VHT1*, which were repressed by 6-, 6-, and 4-fold, respectively, encode proteins involved in the catalysis of dethiobiotin synthesis from 7,8-diaminopelargonic acid, synthesis of biotin from dethiobiotin, and high affinity transport of biotin, respectively. These results thus reveal an important regulatory role for the phospholipid precursors in biotin biosynthesis.

Metabolism of one-carbon compounds, which are derived from the catabolism of serine, glycine, and formate (33–37) and are important for the synthesis of methionine and purines, was also affected by IC_{50} . GCVI, encoding glycine dehydrogenase, a component of a protein complex involved in glycine catabolism in mitochondria (38), was induced by ~ 5 -fold in IC_{50} . The expression of MTD1, encoding NAD-dependent tetrahydrofolate dehydrogenase, was induced by ~ 3 -fold, whereas the expression of MET13, encoding tetrahydrofolate reductase, was repressed by ~ 3 -fold. SAM2, encoding S-adenosylmethionine transferase, was repressed by ~ 7 -fold, whereas OPT1 and

Fig. 2. Comparative microarray data and real-time PCR analyses of gene repression and activation by ${\rm IC}_{50}$. The expression of INO1, BIO5, and OPTI was analyzed in the wild-type strain grown in the absence $(gray\ bars)$ or presence $(black\ bars)$ of ${\rm IC}_{50}$ as described under "Experimental Procedures." -Fold repression or activation is indicated accordingly. ACTI was used as a control.

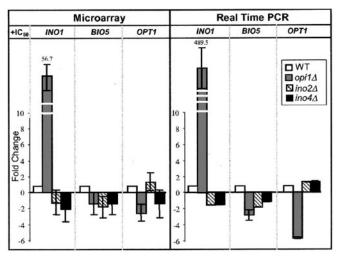


FIG. 3. Comparative microarray data and real-time PCR analyses of gene repression and activation in the $opi1\Delta$, $ino2\Delta$, and $ino4\Delta$ strains relative to the wild-type strain. The level of expression in the presence of IC $_{50}$ of INO1, BIO5, and OPT1 in the $opi1\Delta$ (gray bars), $ino2\Delta$ (hatched bars), and $ino4\Delta$ (black bars) strains was compared to that in the wild-type (WT, white bars) as described under "Experimental Procedures."

MMP1, encoding the glutathione and S-methylmethionine transporters, respectively, were activated by ~ 4 -fold in the wild-type strain.

Several genes that encode transporters of nitrogen-containing compounds were repressed in IC $_{50}$. MEP2 and DUR3, involved in the transport of ammonium and urea, respectively, were both repressed by ~ 4 -fold. TPO2 and TPO4, encoding polyamine transporters localized in both plasma and vacuolar membranes, were repressed by 6- and 3-fold, respectively. Finally, UGA2, involved in the degradation of 4-aminobutyrate, was also repressed by ~ 5 -fold. Four genes, DAN1, CWP1,

Table III

Genes that require Opi1p, Ino2p, and Ino4p for regulation in the presence of IC_{50} based on the 3-fold cutoff

			Fold change					
ORF^a code	Gene name	$\begin{array}{c}\mathrm{WT}+\mathrm{IC}_{50}\ vs\\\mathrm{WT}+\mathrm{IC}_{50}\end{array}$	$\begin{array}{l} opi1\Delta + IC_{50} \\ vs \ WT + IC_{50} \end{array}$	$\begin{array}{l}ino2\Delta + \rm IC_{50}\\vs~\rm WT + \rm IC_{50}\end{array}$	$ino4\Delta + IC_{50} \ vs \ WT + IC_{50}$	Gene description		
Genes that req	uire Opl1p, Ino2p	and Ino4p for nega	ative regulation					
YGR138C	TPO2	1.0	3.9	6.3	5.5	Spermine transporter		
YPR160W	GPH1	1.0	3.8	4.6	5.2	Glycogen phosphorylase		
YFR053C	HXK1	1.0	3.4	9.4	6.5	Hexokinase		

^a ORF, open reading frame; WT, wild-type.

Table IV Genes that require Opi1p, but have little or no dependence on Ino2p and Ino4p for regulation in IC_{50} based on the 3-fold cutoff

ORF ^a code Gene name			Fold ch	nange		
	Gene name	$\begin{array}{c} \mathrm{WT} + \mathrm{IC}_{50} \ vs \\ \mathrm{WT} + \mathrm{IC}_{50} \end{array}$	$\begin{array}{l} opi1\Delta + IC_{50} \\ vs \ WT + IC_{50} \end{array}$	$\begin{array}{l}ino2\Delta + IC_{50}\\vs \ WT + IC_{50}\end{array}$	$\begin{array}{c} ino4\Delta + IC_{50} \\ vs \ WT + IC_{50} \end{array}$	Gene description
Genes that re	equire Opi1p	for negative reg	ulation			
YJL153C	INO1	1.0	56.7	-1.2	-2.1	Inositol-1-phosphate synthase
YEL073C		1.0	34.3	1.2	-1.7	Unknown
YDR502C	SAM2	1.0	7.3	-1.2	-1.4	S-Adenosylmethionine transferase
YJR073C	OPI3	1.0	7.2	-2.4	-2.5	Methylene-fatty-acyl-phospholipid synthase
YJR008W		1.0	5.9	1.2	-1.1	Unknown
YBR006W	UGA2	1.0	5.4	1.3	-1.1	Succinate-semialdehyde dehydrogenase
YBL106C	SRO77	1.0	5.3	-1.0	-1.1	Golgi-to-plasma membrane transport
YMR271C	URA10	1.0	4.3	1.0	1.1	Orotate phosphoribosyltransferase
YNL169C	PSD1	1.0	4.3	1.6	1.4	Phosphatidylserine decarboxylase
YER026C	CHO1	1.0	3.7	1.3	1.4	CDP-diacylglycerol: serine <i>O</i> -phosphatidyltransferase
YHR067W	RMD12	1.0	3.7	1.4	1.2	Unknown
YDL049C	KNH1	1.0	3.2	1.3	1.0	β -1,6-Glucan biosynthesis
YDR497C	ITR1	1.0	3.1	-1.2	-1.1	myo-Inositol transporter
YBR177C	EHT1	1.0	3.0	1.1	1.1	Lipid metabolism
Gene that re-	quires Opi1p	for positive regu	lation			•
YDR205W	MSC2	1.0	-6.2	1.1	-1.0	Cation transporter

^a ORF, open reading frame; WT, wild-type.

 $T_{ABLE} \ V \\ Genes \ that \ require \ Ino 2p, \ but \ have \ little \ or \ no \ dependence \ on \ Opi 1p \ and \ Ino 4p \ for \ regulation \ in \ the \ presence \ of \ IC_{50} \ based \ on \ the \ 3-fold \ cutoff$

			Fold	change		
ORF ^a code Gen	Gene name	$\begin{array}{c} \mathrm{WT} + \mathrm{IC}_{50} \ vs \\ \mathrm{WT} + \mathrm{IC}_{50} \end{array}$	$\begin{array}{l} opi1\Delta + IC_{50} \\ vs \ WT + IC_{50} \end{array}$	$\begin{array}{c}ino2\Delta + IC_{50}vs\\WT + IC_{50}\end{array}$	$\begin{array}{c} ino4\Delta + \rm{IC}_{50} \\ vs \; \rm{WT} + \rm{IC}_{50} \end{array}$	Gene description
Genes that red	quire Ino2p fo	r negative regul	ation			
YLR327C		1.0	1.1	3.9	2.8	Unknown
YDR277C	MTH1	1.0	1.0	3.5	1.9	Signal transduction, glucose transport
YJL116C	NCA3	1.0	1.5	3.3	2.5	Mitochondrion organization and biogenesis
YDR461W	MFA1	1.0	2.5	3.2	2.9	Pheromone
YER150W	SPI1	1.0	1.6	3.2	2.6	Unknown
YDR343C	HXT6	1.0	1.6	3.1	2.7	Fructose, glucose, mannose transporter
YGR008C	STF2	1.0	2.2	3.0	2.5	ATP synthesis-coupled proton transport

^a ORF, open reading frame; WT, wild-type.

SAG1, and ECM13, encoding proteins known or predicted to function in cell wall biogenesis were also regulated by IC_{50} . DAN1 and SAG1, which encode a cell wall mannoprotein and a cell adhesion receptor, respectively, were repressed by 3- and 4-fold, respectively, whereas CWP1 and ECM13, which encode a cell mannoprotein and a protein involved in hypersensitivity to the cell-surface polymer-perturbing agent calcofluor white, respectively, were induced by \sim 3-fold. Finally, three genes involved in acetyl-CoA metabolism, ACH1, CRC1 and CIT3, encoding acetyl-CoA hydrolase, acyl-carnitine carrier, and citrate synthase activities, respectively, were also repressed by \sim 4-fold in response to IC_{50} .

Role of Opi1p in IC_{50} -mediated Transcriptional Regulation—Opi1p was previously shown to be required for repression of INO1 and other phospholipid genes regulated in the presence of IC (23, 39, 40). To examine the role of Opi1p in the IC_{50} response, we examined the expression profile of the 50 IC_{50} -regulated genes in the $opi1\Delta$ mutant background. Of the 39

 IC_{50} -repressed genes, only 10 were derepressed by >3-fold when Opi1p function was lost (Table II). As expected, repression of the phospholipid genes INO1, OPI3, and PSD1 in IC50 was shown to be highly dependent on Opi1p, with 56.7-, 7.2-, and 4.3-fold derepression with the loss of Opi1p function, respectively (Tables II and IV). The seven other Opi1p-dependent IC₅₀-repressed genes (SAM2, TPO2, UGA2, URA10, SRO77, YEL073C, and YJR008W) are involved in various metabolic pathways. Four IC₅₀-repressed genes, TPO4, DAN1, YER078C, YJL048C, were moderately affected by the loss of Opi1p function, exhibiting >2-fold derepression in $opi1\Delta$, suggesting that these genes might require Opi1p for negative regulation. Our data also demonstrated a role for Opi1p in IC50-mediated activation of gene expression. This was shown by the 6.2-fold repression of the IC_{50} -activated gene MSC2 in the $opi1\Delta$ mutant in the presence of ${\rm IC}_{50}$ (Table II). Two other ${\rm IC}_{50}$ -activated genes, MMP1 and OPT1, were moderately affected by the loss of Opi1p function, exhibiting at least 2-fold repression in $opi1\Delta$,

Table VI
Genes that require Ino4p, but have little or no dependence on Opi1p and Ino2p for regulation in IC₅₀ based on the 3-fold cutoff

ORF^a code Gene name		Fold ch	nange			
	$\begin{array}{c}\mathrm{WT}+\mathrm{IC}_{50}\ vs\\\mathrm{WT}+\mathrm{IC}_{50}\end{array}$	$\begin{array}{l} opi1\Delta + IC_{50} \\ vs \ WT + IC_{50} \end{array}$	$\begin{array}{l} ino2\Delta + IC_{50} \\ vs \;WT + IC_{50} \end{array}$	$\begin{array}{c} ino4\Delta + IC_{50} \\ vs \ WT + IC_{50} \end{array}$	Gene description	
Genes that req	uire Ino4p for	negative regula	tion			
YFL014W	HSP12	1.0	1.1	2.7	3.2	Heat shock protein
YGL156W	AMS1	1.0	1.9	2.8	3.2	α -Mannosidase
YOR120W	GCY1	1.0	1.8	2.8	3.2	Aldehyde reductase, alcohol dehydrogenase
YMR107W		1.0	-2.2	2.9	3.1	Unknown
YGR088W	CTT1	1.0	1.4	2.6	3.0	Catalase
YOL155C		1.0	-2.1	2.3	3.0	Cell wall organization and biogenesis

 $^{^{\}it a}$ ORF, open reading frame; WT, wild-type.

Table VII
Genes that require Ino2p and Ino4p, but have little or no dependence on Opi1p for regulation in the presence of IC_{50} based on the 3-fold cutoff

			Fold ch	nange		
ORF ^a code Ge	Gene name	$\begin{array}{c} \mathrm{WT} + \mathrm{IC}_{50} \ vs \\ \mathrm{WT} + \mathrm{IC}_{50} \end{array}$		$\begin{array}{c} ino2\Delta + IC_{50} \\ vs \ WT + IC_{50} \end{array}$		Gene description
Genes that req	uire Ino2p a	nd Ino4p for ne	gative regulat	ion		
YHR092C	HXT4	1.0	1.1	6.7	3.7	Fructose, glucose, and mannose transporter
YOL053C-A		1.0	2.1	6.0	6.4	Unknown
YGL032C	AGA2	1.0	2.5	4.6	4.4	Cell adhesion receptor
YNR044W	AGA1	1.0	1.2	4.6	4.8	Cell adhesion receptor
YCR021C	HSP30	1.0	2.8	4.2	3.2	Bacterial rhodopsin, heat shock protein
YCL027W	FUS1	1.0	1.5	4.1	3.8	Conjugation with cellular fusion
YMR105C	PGM2	1.0	1.9	4.1	3.7	Phosphoglucomutase
YNL160W	YGP1	1.0	2.3	3.9	3.4	Amino acid metabolism, response to stress
YBR072W	HSP26	1.0	2.7	3.7	4.6	Heat shock protein
YHR087W		1.0	1.7	3.6	3.7	Unknown
YOR173W	DCS2	1.0	1.7	3.4	3.3	Unknown
YMR250W	GAD1	1.0	2.3	3.1	3.1	Glutamate decarboxylase
YGR248W	SOL4	1.0	1.7	3.0	3.2	Glucosamine/galactosamine-6-phosphate isomeras

^a ORF, open reading frame; WT, wild-type.

suggesting that Opi1p might play a role in the positive regulation of these genes in the presence of IC_{50} .

The expression of 33 IC $_{50}$ -regulated genes was not affected significantly (exhibiting 2-fold change or less) by the loss of Opi1p function (Table II). These results thus indicate that only a small subset of IC $_{50}$ -regulated genes requires Opi1p. Furthermore, for those genes requiring Opi1p, our data demonstrated the role of Opi1p in both negative and positive transcriptional regulation during the IC $_{50}$ response.

Role of Ino2p and Ino4p in IC₅₀-mediated Transcriptional Regulation—The Ino2p-Ino4p heterodimer was previously shown to be required for derepression of *INO1* with limiting IC concentrations (1, 2). To examine the role of Ino2p and Ino4p in the IC₅₀ response, the expression profile of IC₅₀-regulated genes was examined in the $ino2\Delta$ and $ino4\Delta$ strains and compared with that measured in the wild-type strain under IC_{50} conditions. Of the 50 IC_{50} -regulated genes, the expression of only four genes was altered upon the loss of Ino2p or Ino4p. TPO2 and AMS1 were highly derepressed, whereas OPI3 and YDL241W were moderately repressed in both $ino2\Delta$ and $ino4\Delta$ strains. These results suggest a role for Ino2p and Ino4p in both positive and negative transcriptional regulation. Interestingly, IC₅₀-regulated genes that were dependent on Ino2p and Ino4p exhibited the same expression pattern of down- or upregulation in both $ino2\Delta$ and $ino4\Delta$ strains.

Quantitative Analysis of IC_{50} Regulation—To confirm the results of the microarray analyses, a subset of IC_{50} -regulated genes was further characterized by semiquantitative (Fig. 1) and real-time (Fig. 2) RT-PCR using specific primers (Table I). The ACT1 gene, which is not regulated by IC_{50} and is independent of Opi1p, Ino2p, and Ino4p, was used as a control. Analysis of the expression of 12 IC-regulated genes by semi-quantitative RT-PCR showed that, in concordance with the

microarray data, the transcript levels of INO1, OPI3, BIO2, BIO3, BIO4, BIO5, VHT1, MEP2, and SAM2 were reduced in the wild-type strain in response to IC₅₀. Conversely, the expression of GCV1, MTD1, and OPT1 was induced (Fig. 1). Expression analyses in the $opi1\Delta$, $ino2\Delta$, and $ino4\Delta$ strains showed that, in support of our microarray data, the overall transcriptional repression of the OPI3 gene required functional Opi1p, Ino2p, and Ino4p, with Opi1 acting as a repressor and Ino2p and Ino4p acting as activators. Moreover, RT-PCR analyses confirmed the role of Opi1p as a repressor in the transcriptional repression of INO1 and SAM2 and as an activator in the transcriptional activation of OPT1, GCV1, and MTD1 in response to IC_{50} . Unlike *OPI3*, none of these five IC_{50} -regulated genes required Ino2p or Ino4p for their IC₅₀-mediated transcriptional regulation. The six other genes analyzed by semiquantitative RT-PCR showed little or no dependence on Opi1p, Ino2p, or Ino4p in response to IC₅₀ (Fig. 1). The expression of INO1, BIO5, and OPT1 was further analyzed and quantified by real-time PCR in the wild-type and $opi1\Delta$, $ino2\Delta$, and $ino4\Delta$ mutant backgrounds. This assay revealed the same pattern of regulation for these genes as that shown by microarray analysis and semiquantitative RT-PCR. With the exception of INO1, which was found to be repressed in the wild-type strain by 466.5-fold and derepressed in $opi1\Delta$ by 489.5-fold using real-time PCR analysis compared with 46.9- and 56.7fold, respectively, using microarray analyses, most likely due to the difference in sensitivity between the two assays, the repression and derepression ratios for BIO5 and OPT1 were almost identical between the two experimental assays (Figs. 2 and 3).

Opi1p, Ino2p, and Ino4p Are Global Regulators of Gene Expression—The data described above show the importance of Opi1p, Ino2p, and Ino4p in the regulation of a subset of genes

whose expression changed by at least 3-fold in the presence of IC₅₀ in the wild-type strain. To examine the global transcriptional regulation of genes coordinated by Opi1p, Ino2p, and Ino4p, we compared gene expression levels in the wild-type, $opi1\Delta$, $ino2\Delta$, and $ino4\Delta$ strains. Because of the inositol auxotrophy of $ino2\Delta$ and $ino4\Delta$, all four strains were compared under IC₅₀ conditions. We found 44 genes that exhibited a change in their expression levels by at least 3-fold in at least one of the three mutants. These genes were classified into five groups based on their requirements for Opi1p and/or Ino2p and/or Ino4p (Table III-VII). Overall, 18 genes were regulated by Opi1p (Tables III and IV), 23 by Ino2p (Tables III, V, and VII), and 22 by Ino4p (Tables III, VI, and VII). Of the 18 Opi1pregulated genes, 17 required Opi1p for negative regulation, whereas one (MSC2) required Opi1p for positive regulation (Tables III and IV). Some genes were moderately affected by the loss of Opi1p, exhibiting at least 2-fold activation (MFA1, STF2, YOL053c-a, AGA2, HSP30, YGP1, HSP26, and GAD1) (Tables V and VII) or 2-fold repression (YMR107W and YOL155C) (Table VI) in $opi1\Delta$, demonstrating once again a role for Opi1p in negative and positive transcriptional regulation. All 23 Ino2p-regulated genes required Ino2p for negative regulation (Tables III, V, and VII). Similarly, all 22 Ino4p-regulated genes required Ino4p for negative regulation (Tables III, VI, and VII). Most genes that were induced in $ino2\Delta$ were also induced in $ino4\Delta$ and vice versa (Tables V and VI), suggesting that both Ino2p and Ino4p are required for their negative regulation. Only a small subset of the 44 genes was regulated by IC₅₀ (25%) or involved in membrane biogenesis (14%). Hierarchical clustering of the gene expression data in the wildtype, $opi1\Delta$, $ino2\Delta$, and $ino4\Delta$ strains further confirmed the presence of different groups of genes with similar regulatory profiles (Fig. 4). Together, these data suggest that Opi1p, Ino2p, and Ino4p are general transcriptional regulators involved in both negative and positive transcriptional regulation of genes, most of which are not regulated by IC₅₀.

DISCUSSION

Yeast strains have evolved to be responsive to changing environmental and nutritional conditions. The transcriptional machineries deployed in response to these changes are different and are triggered by specific sensors able to monitor extracellular or intracellular levels of substrates and affect the expression of genes accordingly (41). Elegant schemes of these regulatory mechanisms have been drawn from thorough biochemical and genetic analyses of glucose (42), amino acid (43-45), and phosphate (46) utilization, to name only a few. Although it is conceivable that similar signaling pathways could be involved in the cellular response to IC, the components of such pathways have not yet been identified. In this study, we have monitored the global response of yeast cells to IC50 and further characterized the importance of transcriptional regulators Opi1p, Ino2p, and Ino4p in the regulation of IC_{50} -regulated genes. Interestingly, of the 6351 yeast genes analyzed, only 50 were found to be either repressed or induced by at least 3-fold by IC₅₀, including *INO1*, *OPI3*, and *PSD1*, previously reported to be repressed by these soluble precursors. Other known ICrepressed genes were repressed by at least 2-fold by IC₅₀, such as ITR1 (2.8-fold), CHO1 (2.8-fold), CKI1 (2.5-fold), INO2 (2.4fold), CDS1 (2.2-fold), ACC1 (2.1-fold), and INO4 (2.0-fold), whereas other genes were repressed by <2-fold (FAS1, CPT1, PGS1, and CHO2) under our conditions. The expression of these genes might require different concentrations of inositol or might be only transiently regulated by IC.

An important finding of our analysis was the discovery of a subset of genes whose expression was significantly activated by IC_{50} . Of the 50 IC_{50} -regulated genes, 11 were activated by

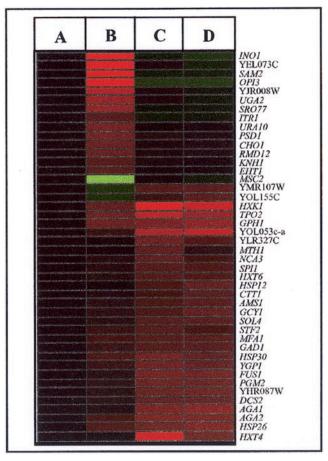


FIG. 4. Cluster analysis of genes regulated by Opi1p and/or Ino2p and/or Ino4p. The levels of gene expression in the wild-type (A), $opi1\Delta$ (B), $ino2\Delta$ (C), and $ino4\Delta$ (D) strains were compared to the level of expression in the wild-type strain. All strains were grown in IC₅₀ as described under "Experimental Procedures." Gene repression is shown in green; gene activation is shown in red; and unchanged levels are shown in black. The -fold ratios and cellular functions of the clustered genes are listed in Tables III–VII.

these precursors. Eight of these genes encode proteins that are involved in one-carbon compound metabolism and methionine synthesis, cell wall organization and biogenesis, zinc ion homeostasis, and ethanol fermentation, and the other three genes encode proteins with unknown function. Whereas previous studies have shown that the activity and/or transcription of *DPP1*, *AUR1*, and *INM1* is increased by inositol (26, 29), the expression of these genes was unaffected under our experimental conditions. The differences in inositol and/or choline concentrations between the two studies might account for these differences.

Analysis of gene expression of the IC_{50} -regulated genes in $opi1\Delta$, $ino2\Delta$, and $ino4\Delta$ showed that only a small subset of these genes required Opi1p, Ino2p, or Ino4p for the IC_{50} response, suggesting that the IC_{50} response involves additional factors, the identity of which is not yet known. Furthermore, among the 39 IC_{50} -repressed genes, only 10 contain a copy of the UAS_{INO} sequence in their promoter region, suggesting novel regulatory mechanisms. However, in silico analysis failed to identify any specific new or known common motifs in the regulatory regions of those genes. Of the IC_{50} -regulated genes, 34% required Opi1p, and 8% required Ino2p and Ino4p. Interestingly, 15 of the 18 Opi1p-regulated genes found in our microarray analysis were also found to be regulated by Opi1p in a previous study, which compared the transcriptional profiles of the wild-type and $opi1\Delta$ strains grown in rich medium

(47). Our results support previous reports implicating Opi1p in the transcriptional repression of phospholipid-synthesizing genes. However, the role of Opi1p was not limited to negative regulation of genes involved in membrane biogenesis. The cation transporter gene MSC2 was found to be repressed in $opi1\Delta$, suggesting a role for Opi1p in its positive regulation. Overall, our results show that only a small number of genes require Opi1p, Ino2p, or Ino4p for the IC50 response and that Opi1p, Ino2p, and Ino4p are involved in both positive and negative regulation of gene expression.

A global view of gene regulation in the wild-type, $opi1\Delta$, $ino2\Delta$, and $ino4\Delta$ strains revealed that Opi1p, Ino2p, and Ino4p are global regulators of gene expression, affecting the expression of a large number of genes, only a subset of which is regulated by IC or is involved in phospholipid biosynthesis. Most of the genes regulated by Opi1p, Ino2p, or Ino4p were induced in $opi1\Delta$, $ino2\Delta$, or $ino4\Delta$. Conversely, a small number of Opi1p-, Ino2p-, or Ino4p-dependent genes were moderately repressed in $opi1\Delta$, $ino2\Delta$, or $ino4\Delta$. These results suggest that Opi1p, Ino2p, and Ino4p are general regulators involved in negative and positive transcriptional regulation. Genes that required both Ino2p and Ino4p exhibited the same pattern of down- or up-regulation in both $ino2\Delta$ and $ino4\Delta$ strains, suggesting that Ino2p and Ino4p have similar roles and possibly function together as a heterodimeric positive or negative regulatory complex.

In addition to genes involved in phospholipid biogenesis, our study revealed new IC-regulated genes that are involved in various other cellular metabolic pathways. Particularly, all of the known yeast genes involved in biotin biosynthesis (BIO3, BIO4, and BIO2) and the transport of biotin (VHT1) and its precursor 7-keto-8-aminopelargonic acid (BIO5) were highly repressed by IC₅₀. Interestingly, SAM2, which catalyzes the formation of S-adenosylmethionine (an amino group donor for biotin synthesis) from methionine), SAM3 (encoding the S-adenosylmethionine transporter), ACC1 (encoding acetyl-CoA carboxylase, which requires biotin as a cofactor), and *BPL1* (encoding a biotin:protein ligase) were also repressed by at least 2-fold in the presence of IC50. In conclusion, these studies provide a better understanding of the yeast response to IC; demonstrate the IC-mediated repression and activation of a number of genes involved in different metabolic pathways: suggest the involvement of other regulators during the IC response; and reveal new roles for Opi1p, Ino2p, and Ino4p in the global regulation of gene expression in yeast.

Acknowledgments-We thank Dr. Shrikant Mane and Sheila Westman (Yale Affymetrix Facility) for help with microarray analysis. We are grateful to Doug Mayle (Spotfire Inc.) for help with cluster analysis. We thank Drs. Lawrence Klobutcher, Stephen Wikel, Gabriella Pessi, and Guillermo Kociubinski for critical reading of the manuscript.

REFERENCES

- 1. Carman, G. M., and Henry, S. A. (1999) Prog. Lipid Res. 38, 361-399
- 2. Henry, S. A., and Patton-Vogt, J. L. (1998) Prog. Nucleic Acids Res. Mol. Biol. **61**, 133–179

- 3. Hoshizaki, D. K., Hill, J. E., and Henry, S. A. (1990) J. Biol. Chem. 265, 4736 - 4745
- 4. Nikoloff, D. M., McGraw, P., and Henry, S. A. (1992) Nucleic Acids Res. 20,
- 5. Lopes, J. M., and Henry, S. A. (1991) Nucleic Acids Res. 19, 3987–3994
- 6. Schuller, H. J., Richter, K., Hoffmann, B., Ebbert, R., and Schweizer, E. (1995) FEBS Lett. **370**, 149–152
- 7. Schuller, H. J., Schorr, R., Hoffmann, B., and Schweizer, E. (1992) Nucleic Acids Res. 20, 5955–5961
- 8. Bachhawat, N., Ouyang, Q., and Henry, S. A. (1995) J. Biol. Chem. 270, 25087-25095
- 9. Ambroziak, J., and Henry, S. A. (1994) J. Biol. Chem. 269, 15344-15349
- 10. Hirsch, J. P., and Henry, S. A. (1986) Mol. Cell. Biol. 6, 3320-3328
- 11. Carman, G. M., and Henry, S. A. (1989) Annu. Rev. Biochem. 58, 635-669
- 12. Greenberg, M. L., and Lopes, J. M. (1996) Microbiol. Rev. 60, 1-20
- 13. Schuller, H. J., Hahn, A., Troster, F., Schutz, A., and Schweizer, E. (1992) EMBO J. 11, 107-114
- 14. Kodaki, T., Nikawa, J., Hosaka, K., and Yamashita, S. (1991) J. Bacteriol. 173, 7992-7995
- 15. Bailis, A. M., Poole, M. A., Carman, G. M., and Henry, S. A. (1987) Mol. Cell. Biol. 7, 167–176
- 16. Bailis, A. M., Lopes, J. M., Kohlwein, S. D., and Henry, S. A. (1992) Nucleic Acids Res. 20, 1411-1418
- 17. Gaynor, P. M., Gill, T., Toutenhoofd, S., Summers, E. F., McGraw, P., Homann, M. J., Henry, S. A., and Carman, G. M. (1991) Biochim. Biophys. Acta 1090, 326 - 332
- 18. Shen, H., and Dowhan, W. (1997) J. Biol. Chem. 272, 11215-11220
- 19. Shen, H., and Dowhan, W. (1998) J. Biol. Chem. 273, 11638-11642
- 20. Hasslacher, M., Ivessa, A. S., Paltauf, F., and Kohlwein, S. D. (1993) J. Biol. Chem. **268**, 10946–10952
- 21. Nikawa, J., Tsukagoshi, Y., and Yamashita, S. (1991) J. Biol. Chem. 266, 11184-11191
- 22. Lai, K., and McGraw, P. (1994) J. Biol. Chem. 269, 2245-2251
- 23. White, M. J., Hirsch, J. P., and Henry, S. A. (1991) J. Biol. Chem. 266, 863–872
- 24. Ashburner, B. P., and Lopes, J. M. (1995) Mol. Cell. Biol. 15, 1709–1715
- 25. Jiranek, V., Graves, J. A., and Henry, S. A. (1998) Microbiology (Reading) 144, 2739-2748
- 26. Oshiro, J., Rangaswamy, S., Chen, X., Han, G. S., Quinn, J. E., and Carman, G. M. (2000) J. Biol. Chem. 275, 40887–40896
- 27. Ko, J., Cheah, S., and Fischl, A. S. (1994) J. Bacteriol. 176, 5181-5183
- 28. Morlock, K. R., McLaughlin, J. J., Lin, Y. P., and Carman, G. M. (1991) J. Biol. Chem. 266, 3586-3593
- 29. Murray, M., and Greenberg, M. L. (2000) Mol. Microbiol. 36, 651-661
- 30. Schwank, S., Hoffmann, B., and Schuller, H. J. (1997) Curr. Genet. 31,
- 31. Hosaka, K., Nikawa, J., Kodaki, T., and Yamashita, S. (1994) J. Biochem. (Tokyo) 115, 131-136
- 32. Schmitt, M. E., Brown, T. A., and Trumpower, B. L. (1990) Nucleic Acids Res. **18.** 3091-3092
- 33. Barlowe, C. K., and Appling, D. R. (1988) Biofactors 1, 171-176
- 34. Pasternack, L. B., Laude, D. A., Jr., and Appling, D. R. (1994) Biochemistry 33, 7166 - 7173
- 35. Pasternack, L. B., Laude, D. A., Jr., and Appling, D. R. (1994) Biochemistry 33,
- 36. Pasternack, L. B., Littlepage, L. E., Laude, D. A., Jr., and Appling, D. R. (1996) Arch. Biochem. Biophys. 326, 158–165 37. West, M. G., Horne, D. W., and Appling, D. R. (1996) Biochemistry 35,
- 3122-3132
- 38. Ogur, M., Liu, T. N., Cheung, I., Paulavicius, I., Wales, W., Mehnert, D., and Blaise, D. (1977) J. Bacteriol. 129, 926-933
- 39. Greenberg, M. L., Reiner, B., and Henry, S. A. (1982) Genetics 100, 19-33
- 40. Greenberg, M. L., Goldwasser, P., and Henry, S. A. (1982) Mol. Gen. Genet. **186.** 157–163
- 41. Forsberg, H., and Ljungdahl, P. O. (2001) Curr. Genet. 40, 91-109
- 42. Ozcan, S., Dover, J., Rosenwald, A. G., Wolfl, S., and Johnston, M. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 12428-12432
- 43. Didion, T., Regenberg, B., Jorgensen, M. U., Kielland-Brandt, M. C., and Andersen, H. A. (1998) Mol. Microbiol. 27, 643-650
- 44. Iraqui, I., Vissers, S., Bernard, F., de Craene, J. O., Boles, E., Urrestarazu, A., and Andre, B. (1999) Mol. Cell. Biol. 19, 989-1001
- 45. Klasson, H., Fink, G. R., and Ljungdahl, P. O. (1999) Mol. Cell. Biol. 19, 5405-5416
- 46. Wykoff, D. D., and O'Shea, E. K. (2001) *Genetics* **159**, 1491–1499 47. Travers, K. J., Patil, C. K., Wodicka, L., Lockhart, D. J., Weissman, J. S., and Walter, P. (2000) Cell 101, 249-258